[置顶] 二叉树相关操作的C++代码实现
二叉树,C++,递归2016-10-29
typedef struct BTree
{
int value; //值
struct BTree *lchild; //左孩子
struct BTree *rchild; //右孩子
}BTree;
/* num 存储二叉树的前序序列
** index 下标
*/
BTree *CreateBTree(BTree *node,int *num,int& index)
{
/*以0为结束条件*/
if(num[index] == 0)
return NULL;
else
{
node = new BTree;
node -> value = num[index];
node -> lchild = CreateBTree(node->lchild,num,++index);
node -> rchild = CreateBTree(node->rchild,num,++index);
}
return node;
}
/*递归--前序遍历*/
void preOrder(BTree * root)
{
if(root == NULL)
return;
cout << root -> value << " ";
preOrder(root -> lchild);
preOrder(root -> rchild);
}
/*非递归--前序遍历*/
void preOrder_dxm(BTree * root)
{
stack<BTree*> S;
BTree *p = root;
while(p != NULL || !S.empty())
{
while(p != NULL)
{
cout << p -> value << " ";
S.push(p);
p = p -> lchild;
}
if(!S.empty())
{
S.pop();
if(S.empty())
return ;
p = S.top();
S.pop();
p = p -> rchild;
}
}
}
/*递归--中序遍历*/
void inOrder(BTree * root)
{
if(root == NULL)
return;
inOrder(root -> lchild);
cout << root -> value << " ";
inOrder(root -> rchild);
}
/*非递归--中序遍历*/
void inOrder_dxm(BTree * root)
{
stack<BTree*> S;
BTree *p = root;
while(p != NULL || !S.empty())
{
while(p != NULL)
{
S.push(p);
p = p -> lchild;
}
if(!S.empty())
{
p = S.top();
cout << p -> value << " ";
S.pop();
if(S.empty())
return ;
p = S.top();
cout << p -> value << " ";
S.pop();
p = p -> rchild;
}
}
}
/*递归--后序遍历*/
void postOrder(BTree * root)
{
if(root == NULL)
return;
postOrder(root -> lchild);
postOrder(root -> rchild);
cout << root -> value << " ";
}
/*非递归--后序遍历*/
void postOrder_dxm(BTree * root)
{
stack<BTree*> S;
BTree *cur;
BTree *pre = NULL;
S.push(root);
while(!S.empty())
{
cur = S.top(); //取栈顶元素
/*叶子结点 或者 刚才打印的结点是当前结点的左孩子或右孩子时 输出*/
if((cur -> lchild == NULL && cur -> rchild == NULL) ||
(pre != NULL && (pre == cur -> lchild || pre == cur ->rchild)))
{
cout << cur -> value << " ";
S.pop();
pre = cur; //pre 记录打印的结点
}
else
{
if(cur -> rchild != NULL)
S.push(cur -> rchild);
if(cur -> lchild != NULL)
S.push(cur -> lchild);
}
}
}
void print(BTree *root,int h)
{
if(root != NULL)
{
print(root -> rchild,h+1);
for(int i=0; i<h; i++)
cout << " ";
cout << root -> value;
print(root -> lchild,h+1);
}
cout << endl;
}
int getleaves(BTree *root)
{
if(root == NULL)
return 0;
if(root -> lchild == NULL && root -> rchild == NULL)
return 1;
return getleaves(root -> lchild) + getleaves(root -> rchild);
}
int getdepth(BTree *root)
{
if(root == NULL)
return 0;
int depthlchild = getdepth(root -> lchild);
int depthrchild = getdepth(root -> rchild);
return (depthlchild > depthrchild) ? (depthlchild + 1) : (depthrchild + 1);
}
int main()
{
int num[] = {1,2,4,8,0,0,9,0,0,5,10,0,0,11,0,0,3,6,12,0,0,13,0,0,7,14,0,0,15,0,0};
BTree *root = NULL;
int index = 0;
root = CreateBTree(root,num,index);
cout << "前序非递归遍历: " << endl;
preOrder_dxm(root);
cout << endl;
cout << "中序递归遍历: " << endl;
inOrder(root);
cout << endl;
cout << "后续非递归遍历: " << endl;
postOrder_dxm(root);
cout << endl << endl;
cout << "此二叉树的形状为: " << endl;
print(root,1);
return 0;
}
..
首先我们总结一下三种序列的规律:
前序遍历:根在前;子树在根后,且左子树比右子树靠前
中序遍历:根在中,左子树在根左边,右子树在根右边
后序遍历:根在后,子树在根前,且左子树比右子树靠前
1.根据前序序列的第一个元素建立根节点;
2.在中序序列中找到该元素,确定根节点的左右子树的中序序列;
3.在前序序列中确定左右子树的前序序列;
4.由左子树的前序序列和中序序列建立左子树;
5.由右子树的前序序列和中序序列建立右子树。
1.根据后序序列的最后一个元素建立根节点;
2.在中序序列中找到该元素,确定根结点的左右子树的中序序列;
3.在后序序列中确定左右子树的后序序列;
4.由左子树的后序序列和中序序列建立左子树;
5.由右子树的后序序列和中序序列建立右子树。
/*************************************************************************
> File Name: 中序&先序建立二叉树.cpp
> Author: Tanswer
> Mail: 98duxm@gmail.com
> Created Time: 2016年10月24日 星期一 17时33分24秒
************************************************************************/
#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
using namespace std;
typedef struct BTree
{
char value;
struct BTree *lchild;
struct BTree *rchild;
}BTree;
/*
**pre ---前序序列
**in ---中序序列
*/
BTree *Created(BTree *root,string pre,string in)
{
if(pre.length() == 0)
{
root = NULL;
return NULL;
}
//前序的第一个值 为 根
int root_value = pre[0];
//找到根在中序中的位置 :下标
int index = in.find(root_value);
//左孩子的中序序列
string lchild_in = in.substr(0,index);
//右孩子的中序序列
string rchild_in = in.substr(index+1);
//左孩子结点个数
int lchild_length = lchild_in.length();
//右孩子结点个数
int rchild_length = rchild_in.length();
//左孩子的前序序列
string lchild_pre = pre.substr(1,lchild_length);
//右孩子的前序序列
string rchild_pre = pre.substr(1+lchild_length);
root = new BTree;
if(root != NULL)
{
root -> value = root_value;
root -> lchild = Created(root -> lchild,lchild_pre,lchild_in);
root -> rchild = Created(root -> rchild,rchild_pre,rchild_in);
}
return root;
}
/*树状打印二叉树*/
void print(BTree *root,int h)
{
if(root != NULL)
{
print(root -> rchild,h+1);
for(int i=0; i<h; i++)
cout << " ";
cout << root -> value;
print(root -> lchild,h+1);
}
cout << endl;
}
int main()
{
cout << "先序序列为: ABDECFG" << endl;
cout << "中序序列为: DBEAFCG" << endl;
cout << "二叉树为: " << endl;;
string pre = "ABDECFG";
string in = "DBEAFCG";
BTree *root = NULL;
root = Created(root,pre,in);
print(root,1);
return 0;
}
输出结果:
代码实现和上面类似,只需稍作改动即可。
/*
**pre ---前序序列
**in ---中序序列
*/
BTree *Created(BTree *root,string post,string in)
{
if(post.length() == 0)
{
root = NULL;
return NULL;
}
/*后序序列的结点个数*/
int size = post.size();
//后序的最后一个值 为 根
int root_value = post[size - 1];
//找到根在中序中的位置 :下标
int index = in.find(root_value);
//左孩子的中序序列
string lchild_in = in.substr(0,index);
//右孩子的中序序列
string rchild_in = in.substr(index+1);
//左孩子结点个数
int lchild_length = lchild_in.length();
//右孩子结点个数
int rchild_length = rchild_in.length();
//左孩子的后序序列
string lchild_post = post.substr(0,lchild_length);
//右孩子的后序序列
string rchild_post = post.substr(lchild_length,rchild_length);
root = new BTree;
if(root != NULL)
{
root -> value = root_value;
root -> lchild = Created(root -> lchild,lchild_post,lchild_in);
root -> rchild = Created(root -> rchild,rchild_post,rchild_in);
}
return root;
}
输出结果: